1	Q.	Provide the Forecast Cost of Service for 2001.
2		
3		
4	Α.	The forecast Cost of Service Study for 2001 is not currently available, but is
5		in progress.

1	Q.	Provide a table showing (a) the total amount contributed by the Industrial
2		Customers to the Rural subsidy in 1995, 1996, 1997, 1998 and 1999 and (b)
3		the amount which would have been contributed by the Industrial Customers
4		in each of those years if the direction of the Legislature in Section 3(a)(iv) of
5		the Electrical Power Control Act, 1994 that the Industrial Customers'
6		contribution to the Rural subsidy 'shall be gradually reduced during the
7		period prior to December 31, 1999" had been implemented to reduce their
8		contribution by 20% in 1995, by 40% in 1996, by 60% in 1997, by 80% in
9		1998 and by 100% in 1999.
10		
11	A.	The Board, in its Order No. P.U. 23(1999-2000), approved a reduction in the
12		Industrial rates of 10.74% to remove the portion of the Rural Deficit that had
13		been included in these rates. The table below was calculated based on
14		applying this reduction of 10.74% to the total Industrial revenue net of RSP
15		revenue for each year requested to determine the amount contributed by the
16		Industrial Customers to the Rural subsidy.
17		
18		The total amount contributed by Industrial Customers for each of the years
19		as requested in part (a) is shown in column 3.
20		
21		The amount that would have been contributed based on the reductions as
22		requested in part (b) is shown in column 4. The amounts in column 4 are
23		based on the requested percentage reductions effective at the end of each
24		year.
25		
26		Also, please see response to IC-9.
27		

IC-8 2001 General Rate Application Page 2 of 2

Year	Industrial	Subsidy	Subsidy
	Revenue	Portion	Based On
	(excl. RSP)		Reductions
1995	\$44,467,369	\$4,758,008	\$4,758,008
1996	47,526,674	5,104,365	4,083,492
1997	47,689,883	5,121,893	3,073,136
1988	36,269,044	3,895,295	1,558,118
1999	43,453,323	4,666,887	933,377

2

1

1	Q.	Explain why Hydro did not apply to the Public Utilities Board in the period
2		June 9, 1994 to November 19, 1999 to implement the power policy of the
3		province as expressed in Section 3(a)(iv) of the Electrical Power Control Act,
4		1994 that the Industrial Customer's contribution to the Rural subsidy "shall be
5		gradually reduced during the period prior to December 31, 1999."
6		
7	Α.	Though the Electrical Power Control Act, 1994 obtained royal assent on June
8		9, 1994, it was not proclaimed to come into force until later – effective
9		January 1, 1996. After the Act went into effect, Hydro had discussions with
10		Government as to the reduction of the Industrial Customers' contribution to
11		the Rural subsidy and were advised Government's policy as expressed in
12		Section 3(a)(iv) was under review. One of the options being considered was
13		the repeal of this section.
14		
15		Clarification/direction was sought by Hydro from 1996-1999. In August of
16		1998 Government announced it was undertaking an Energy Policy Review
17		that would consider a broad range of regulatory and utility industry structure
18		issues. Hydro received direction from Government to apply for a change to
19		industrial rates in October, 1999 (copy of letter of direction attached).

1	Q.	What amount of interest was credited to the RSP in the years 1992 - 2000,
2		inclusive?
3		
4		
5	Α.	Please see response to IC-73.

1	Q.	Prov	ide a Table which shows the following for each of the years 1994 - 2000								
2		inclu	inclusive assuming the implementation of the Cost of Service Methodology								
3		appr	approved in the Public Utility Board 1993 Report (where the vertical axis								
4		repre	represents the years and the horizontal access (sic) the following data):								
5											
6		1.	the demand rate which would have been charged the Industrial								
7			Customers for firm power and for each class of non-firm service;								
8		2.	the energy rate which would have been charged the Industrial								
9			Customers for firm power and for each class of non-firm service and								
10			for wheeling;								
11		3.	the Specifically Assigned Charges which would have been charged								
12			Industrial Customers, and the total for all Industrial Customers;								
13		4.	the total number of kWh sold to the Industrial Customers for those								
14			years for firm power and for each class of non-firm service and for								
15			wheeling;								
16		5.	the total dollar amount which would have been billed to the Industrial								
17			Customers in those years, exclusive of sales tax, for firm power and								
18			for each class of non-firm service and for wheeling (indicate subtotals								
19			for each class of service and overall total);								
20		6.	the average cost per kilowatt hour which would have resulted;								
21		7.	the total dollar amount which was billed to Industrial Customers;								
22		8.	the average cost per kilowatt hour which was billed to Industrial								
23			Customers;								
24		9.	the difference between (5) and (7).								
25											
26	Α.	In its	1993 Cost of Service Report the Board stated "That the cost of service								
27		meth	odology recommended herein be adopted by Hydro for the purpose of								
28		the r	next rate referral". Hydro has included the Board's approved								

IC-18(Rev) 2001 General Rate Application Page 2 of 2

1	Page 2 of 2 methodology in its 2002 Test Year Cost of Service, as recommended. Hydro
2	therefore submits that the requested information is not relevant to this
3	proceeding as it is hypothetical since it does not reflect historic reality and
4	thus no meaningful conclusions can be drawn. Further, Hydro's rate setting
5	is based on forecast costs. When setting rates, Hydro determines margin
6	based on circumstances at that time. Rates were last set for Island Industrial
7	Customers in 1995, using the Interim Methodology, when Industrial
8	Customers were not regulated. The requested information regarding what
9	rates would have been, using the Generic (1993) Methodology, is presently
10	not determinable.

1	Q.	With respect to forecast 2002 Specifically Assigned Charges for each of the
2		Industrial Customers provide a breakdown of the component parts of each of
3		those forecast Specifically Assigned Charges and identify any Specifically
4		Assigned Charges proposed to be included in 2002 Specifically Assigned
5		Charges which have not been charged in previous years and the dollar
6		amount of and rationale for each proposed change.
7		
8		
9	Α.	Please refer to IC-177 for a breakdown of the component parts of each of the
10		2002 forecast specifically assigned charges.
11		
12		Specifically assigned charges related to the two frequency converters are the
13		only charges not previously charged to Industrial customers. Please refer to
14		IC-41.1(Rev.2) for the component breakdowns associated with these assets.
15		
16		The frequency converters were reassigned following a review of plant
17		assignments undertaken in preparation for this rate application. In the initial
18		years of the Island Interconnected System, the frequency converters at
19		Corner Brook and Grand Falls were of benefit to each of the industrial
20		customers, Newfoundland Power and the grid as a whole. With the continued
21		expansion of the transmission system and the construction of generating
22		stations at Cat Arm and Hinds Lake, operation of the frequency converters
23		has little impact on the 230 kV system voltage levels. The role of the
24		frequency converters has been reduced to providing local voltage control for
25		the mill power systems and transferring power from 50 Hz to 60 Hz for use
26		within the individual paper mills. With the frequency converters being only of
27		benefit to the respective customers, the assets were specifically assigned to
28		each of the industrial customers they serve.

1	Q.	What is the net change in cost for 2002 to each of Hydro's Customer classes						
2		and to each of the Industrial Customers which will result from the proposed						
3		changes in Hydro's depreciation policies?						
4								
5								
6	Α.	Please refer to IC-29 for the net change in cost to	each of Hydro's customer					
7		classes.						
8								
9		Costs are not available for each Industrial custom	her. However, the decrease					
10		in revenues from each Industrial customer, based	I on the revenue					
11		requirement differences estimated in IC-29, are a	s follows:					
12								
13		Abitibi Consolidated – Grand Falls	\$ 58,000					
14		Abitibi Consolidated – Stephenville	197,000					
15		Corner Brook Pulp and Paper Co. Limited	182,000					
16		North Atlantic Refining Limited	83,000					

1	Q.	Frequ	iency	Converte	er: (H	. G.	Budgel	l at	page	21	ind	icate	s that	the
2		freque	ency c	onverters	at Corn	er Br	ook and	l Gra	and Fa	ılls, p	orev	iously	y assię	gned
3		Common Plant, have been Specifically Assigned to Corner Brook Pulp and												
4		Paper	and A	Abitibi Con	solidate	d Inc	. – Gran	d Fa	lls divi	sion	.)			
5					_			_						
6		(1)		is the det										
7		(2)	What	have the	O&M co	osts b	een for (each	of the	e pas	t fiv	e yea	ars?	
8		(3)	What	is the ra	tionale	for i	nvoicing	the	se cos	sts r	low	as S	Specifi	cally
9			Assig	ined?										
10														
11														
12	Α.	(1)	Detai	l calculatio	ons of sp	pecifi	cally ass	signe	d char	rges	are	attac	hed.	
13														
14			Note:	These	calcula	ations	s have	bee	en slig	htly	rev	/ised	from	the
15			speci	fically as	signed	char	rges ca	lcula	ated i	n J	AB-′	1 du	ue to	the
16			inadv	rertent on	nission	of a	oproxima	ately	\$25,0	000	of	plant	from	the
17			custo	mer plant	ratios o	n JAE	3-1, p41							
18														
19		(2)	The f	ollowing a	re the C	D&M	costs fo	r the	Frequ	uenc	y Co	onver	rter Sta	ation
20			at Gr	and Falls	and Co	orner	Brook (inclu	iding t	he a	SSO	ciate	d Terr	ninal
21			Statio	ons) for the	e years '	1999	and 200	00:						
22														
23				1999				\$1	52,077	7				
24				2000				\$1	54,600)				
25									,					
26			The (D&M costs	s for 199	96, 19	997 & 19	998 a	are no	t ava	ailab	le as	they v	were
27			not tr	acked sep	arately	for th	ose yea	rs.						
28														
29		(3)	Pleas	se refer to	the resp	onse	e to IC-32	2.						

1	Q.	Provide copies of all correspondence or other documents related to the
2		introduction of frequency converters at Grand Falls and Corner Brook for the
3		use of Abitibi Consolidated and Corner Brook Pulp and Paper, or their
4		respective predecessors, all contractual documents between Hydro and
5		either customer which have affected the converters since that time and an
6		explanation of the rationale for installing the converters and regarding them
7		as common assets for cost of service purposes to date.
8		
9	Α.	Attached are copies of:
10		
11		- a power contract dated December 10, 1982 between Hydro and The
12		Bowater Power Company Limited (later Deer Lake Power Company
13		Limited and now amalgamated into Corner Brook Pulp and Paper
14		Limited) – please see Article 9.01; and
15		- a power contact between Hydro and Bowater Newfoundland Limited (now
16		Corner Brook Pup and Paper Limited) dated December 10, 1982 – please
17		see Article 8.01.
18		
19		Please also refer to Hydro's response to IC-56 which contains reports that
20		supported the decisions to install the frequency converters.
21		
22		The rationale for installing the frequency converters is explained in detail in
23		the response to IC-56. At the time of the development of Bay D'Espoir and
24		the construction of the Island transmission grid it was decided that all future
25		development would be at 60 Hz and that every effort should be made to
26		convert existing 50 Hz load to 60 Hz operation. The frequency converters
27		provided the mechanism that allowed the 50 Hz and 60 Hz systems to be

1	interconnected and function as a single system while an orderly conversion
2	to 60 Hz was implemented over time.
3	At the time of system development the 50 Hz generation and load in the
4	Grand Falls and Corner Brook areas constituted a significant portion of the
5	total system load and the 50 Hz systems through the frequency converters
6	provided support to the 60 Hz system as did the 60 Hz system provide
7	support to the 50 Hz systems. It is this interdependence of the 50 Hz and 60
8	Hz systems that led to the frequency converters being regarded as common.
9	
10	The Island interconnected system today is quite different. There is very little
11	50 Hz load remaining and the 60 Hz generation and transmission network
12	has developed to the stage where the support provided by the converters is
13	virtually insignificant. The primary function of the frequency converters today
14	is to convert the customers' excess 50 Hz generation to 60 Hz to supply 60
15	Hz loads at the customers' mills in Corner Brook and Grand Falls-Windsor. It
16	is because of this change in the significance of the converters that the
17	assignment has been changed from common to specifically assigned.

1	Q.	With regard to H. Budgell's evidence, page 21, lines $5 - 10$, provide the 2002
2		Forecast Cost of Service assuming that the line to Long Harbour and the
3		Long Harbour Terminal Station were taken out of service.
4		
5		
6	Α.	See attached. Please note that this Cost of Service Study does not
7		incorporate any changes to revenues, or any related impacts associated with
8		interest and return on rate base, from those filed in Exhibit JAB-1.

Q. 1 With reference to Budgell's evidence page 17, lines 7 - 12, for each year 2 since 1996, provide the annual generation, annual radial load and net 3 delivered to the 230 kV grid from the Great Northern Peninsula 1996 4 interconnection.

- 5
- 6

7 Α. The annual generation including the Roddickton mini-hydro and the annual 8 radial load of the Great Northern Peninsula 1996 interconnection for the 9 period 1997 to 2000 is summarized in the following table:

10

	Great Northern Peninsula 1996 Interconnection St. Anthony – Roddickton System						
		Annual	Generation and	d Radial Load			
			1997 – 200	0			
	Gross Generation (MWh)					Annual	
Year	St. Anthony	Roddickton	Roddickton	Roddickton	Total	Load	
	Diesel	Diesel	Wood Chip	Mini-hydro	Generation	MWh	
1997	257	66	78	845	1,246	46,067	
1998	395	122	229	1,386	2,132	47,978	
1999	216	20	0	1,146	1,382	50,323	
2000	139	0	0	793	932	53,653	

11

12

13

The St. Anthony and Roddickton diesel units operated for only planned and

14 forced transmission line outages during the period 1997 to 2000. The 15 generation at Roddickton Wood Chip and the mini-hydro displaced energy

16 from Holyrood during the period 1997 to 2000.

1	Q.	Using the same format as Brickhill's schedule 3.1A, column 3, provide the
2		actual 2CP kW for each year from 1992 to 2000 inclusive.
3		
4		
5	Α.	The 2 CP kW for 1999 and 2000 are attached. As well, an estimate of the
6		2CP kW, at the transmission level for 1994-2000, may be found in the
7		response to IC-137. IC-137 also contains the reasons 1993 and 1992 data is
8		unavailable. The individual class data for rural rate classes was not
9		determinable, so the 2 CP data is presented for bulk rural deliveries.

Page 2 of 2

Newfoundland and Labrador Hydro 2 CP kW - Island Interconnected 1999 and 2000

		1999	2000
Line		Production	Production
No.	Description	Demand	Demand
		(2 CP kW)	(2 CP kW)
	Amounts		
1	Newfoundland Power	1,705,289	1,801,636
2	Industrial - Firm	315,525	263,624
3	Industrial - Non-Firm	-	-
	Rural		
4	1.1 Domestic	50,772	50,906
5	1.12 Domestic All Electric	65,499	64,492
6	1.3 Special	127	129
7	2.1 GS 0-10 kW	5,661	6,184
8	2.2 GS 10-100 kW	18,514	18,564
9	2.3 GS 110-1,000 kVa	10,649	11,509
10	2.4 GS Over 1,000 kVa	11,598	9,451
11	4.1 Street and Area Lighting	1,617	1,584
12	Subtotal Rural	164,438	162,819
13	Total	2,185,252	2,228,078
	Ratios Excluding Return on Equity		
14	Newfoundland Power	0.7804	0.8086
15	Industrial - Firm	0.1444	0.1183
16	Industrial - Non-Firm	-	-
	Rural		
17	1.1 Domestic	0.0232	0.0228
18	1.12 Domestic All Electric	0.0300	0.0289
19	1.3 Special	0.0001	0.0001
20	2.1 GS 0-10 kW	0.0026	0.0028
21	2.2 GS 10-100 kW	0.0085	0.0083
22	2.3 GS 110-1,000 kVa	0.0049	0.0052
23	2.4 GS Over 1,000 kVa	0.0053	0.0042
24	4.1 Street and Area Lighting	0.0007	0.0007
25	Out to tal Dunal	0.0750	0.0704
	Subtotal Rural	0.0752	0.0731

1	Q.	Provide the same information as requested in questions 144-148 above for			
2		the gas turbine units at Stephenville and Hardwoods.			
3					
4	A.	RE: IC-144			
5					
6		At the time of the last rate referral both the Stephenville and Hardwoods ga	S		
7		turbines were assigned common.			
8					
9		<u>RE: IC-145</u>			
10					
11		Neither the Stephenville nor Hardwoods gas turbines were specifically			
12		assigned at the time of the 1992 Report.			
13					
14		RE: IC-146			
15					
16		In 1992, the Stephenville and Hardwoods gas turbines were classified 1009	6		
17		demand-related. The same treatment has been accorded gas turbine			
18		generation in the 2002 Forecast Cost of Service.			
19					
20		<u>RE: IC-147</u>			
21					
22		1. The table below shows when the generating plants in question			
23		became a part of the Island Interconnected System.			
		Generation Source Available to Island Interconnected System			
		Stephenville Gas Turbine May, 1977			
		Hardwoods Gas Turbine November, 1978			

IC-149(Rev) 2001 General Rate Application Page 2 of 4

1 2. Records back to 1977 and 1978 for the Stephenville and Hardwoods 2 Gas Turbines are not readily available, thus data since 1992 are used 3 to answer this question. The table shows the number of times during 1992 through 2000 when each of the plants were operated. To list 4 every incident of operation and the reason for operation is impractical 5 6 because of the limited detail available on the cause of operation. 7 However, operation of these units for testing and synchronous 8 condenser are excluded from the table.

Year	Stephenville Gas Turbine	Hardwoods Gas Turbine
1992	17	22
1993	12	17
1994	10	34
1995	11	15
1996	10	12
1997	1	8
1998	3	17
1999	1	19
2000	1	17

1

2

3

4

5

6

7

8 9 Over this period, Stephenville and Hardwoods gas turbines were used for meeting system generation peak requirements, during emergency situations and for transmission security. When operated for peak requirements all customer classes were served by both gas turbines. When operated for emergency supply and for transmission security the customers in the area of the system where the unit is located would have benefited. For the Stephenville gas turbine the customers benefiting would be Abitibi Consolidated, Newfoundland Power and

- Hydro Rural customers. For the Hardwoods gas turbine the
 customers benefiting would be North Atlantic Refining and
 Newfoundland Power.
 3. The table below provides the number of kWh generated by each unit,
 the amount of fuel consumed by that unit, the cost of the fuel
 consumed, operating and maintenance costs and capital costs for
- 8 each year from 1992 to 2000.

Stephenville Gas Turbine

	Energy Produced	Fuel Consumed	Fuel Cost	O&M Cost	Capital Cost
	(Gross kWh)	(gallons)			
1992	705,600	73,760	\$99,292	\$154,390	\$80,437
1993	1,015,200	88,359	\$110,442	\$169,659	\$9,321
1994	288,000	32,510	\$37,994	\$189,418	\$0
1995	338,400	27,156	\$31,321	\$157,763	\$0
1996	648,000	72,472	\$82,438	\$140,075	\$0
1997	36,000	3,292	\$3,715	\$262,885	\$0
1998	374,400	36,687	\$41,397	\$101,048	\$16,408
1999	201,600	24,446	\$27,608	\$206,053	\$979,631
2000	36,000	11,265	\$13,877	\$2,065,850	\$449,443

Hardwoods Gas Turbine

	Energy Produced (Gross kWh)	Fuel Consumed (gallons)	Fuel Cost	O&M Cost	Capital Cost
1992	2,030,400	130,836	\$127,384	\$183,106	\$0
1993	626,400	59,459	\$57,826	\$687,156	\$0
1994	2,822,400	274,783	\$257,736	\$347,429	\$0
1995	925,200	130,244	\$120,958	\$575,565	\$51,095
1996	972,000	71,207	\$66,130	\$163,619	\$319,196
1997	590,400	50,680	\$47,066	\$128,142	\$604,268
1998	557,200	59,100	\$54,886	\$338,782	\$111,031
1999	792,000	82,638	\$76,309	\$279,329	\$0
2000	223,200	33,739	\$34,573	\$359,940	\$0

Operating and maintenance costs include the gas turbine operator's
 salary for 1992 to 1997. For 2000, the O&M cost includes the gas
 turbine operator and other required labour expenses.

<u>RE: IC-148</u>

6 7

8

4

5

The annual revenue for Stephenville and Hardwoods was determined using the same methodology as IC-148. See table below.

Year	Stephenville	Hardwoods
1992	\$30,370	\$87,104
1993	\$43,146	\$26,622
1994	\$12,499	\$122,492
1995	\$14,484	\$39,599
1996	\$27,929	\$41,893
1997	\$1,588	\$26,037
1998	\$17,410	\$25,910
1999	\$9,435	\$37,066
2000	\$1,634	\$10,133

1	Q.	Provide the same information as requested in questions 144-148 above for
2		the Roddickton mini-hydro plant.
3		
4	Α.	<u>RE: IC-144</u>
5		
6		At the time of the last rate referral the Roddickton mini-hydro plant was
7		connected to the isolated St. Anthony-Roddickton system and was
8		specifically assigned.
9		
10		<u>RE: IC-145</u>
11		
12		At the time of the 1992 Report, the Roddickton mini-hydro was specifically
13		assigned to Hydro Rural as part of the cost of service for all Isolated Rural
14		Systems.
15		
16		<u>RE: IC-146</u>
17		
18		In 1992, the Roddickton mini-hydro plant was classified 50% demand-related
19		and 50% energy-related, in accordance with the methodology approved by
20		the Board in April, 1992. The basis for hydraulic classification was changed
21		to system load factor following the Board's February, 1993 report.
22		
23		<u>RE: IC-147</u>
24		
25		1. The table below shows when the generating plants in question
26		became a part of the Island Interconnected System

1					Fage 2 01
		Gen	eration Sour		Available to Island Interconnected System
		Rod	dickton Mini H		September 7, 1996
1				I	
2	2.	The Rod	dickton mini-h	ydro plant is a	a run of river plant and is used
3		when wa	ter is available	e. It automatio	cally shuts down when there isn't
4		sufficient	water for ope	eration. It is us	sed only as a system energy
5		source a	nd displaces t	he energy cos	sts at Holyrood.
6					
7	3.	The table	e below shows	s the kWh gen	erated, operating and
8		maintena	ance costs and	d capital costs	from 1996 to 2000.
9					
		Roddick	kton Mini Hydr	0	
		F	Energy Produced Gross kWh)	O&M Costs	Capital Costs
		1996	386,350	\$809	
		1997	845,400	\$12,455	
		1998	1,386,000	\$3,686	\$6,195
		1999	1,146,000	\$13,812	
		2000	792,600	\$18,011	
10					

<u>RE: IC-148</u>

- 1 2
- 3 The annual revenue for Roddickton mini-hydro was determined using the
- 4 same methodology as IC-148. See table below.

Year	Roddickton Mini Hydro
1996	\$16,652
1997	\$37,282
1998	\$64,449
1999	\$56,633
2000	\$35,984

1	Q.	In Hydro's 2002 Forecast Cost of Service was based on the last forty (40)
2		years lowest historic inflow sequence experienced, would the revenue
3		requirement change? If so, how?
4		
5		
6	A.	Under the stated circumstances, hydraulic production for 2002 would
7		decrease by 640 GWh. Thermal production would therefore increase
8		accordingly. This would result in an increase in the total revenue
9		requirement of approximately \$20 million.

1	Q.	Provide detailed particulars and calcu	lations showing how a credit was					
2		applied by Hydro in favour of Newfoundland Power in respect of the						
3		Southside Steam Plant when the plan	t was functioning.					
4								
5								
6	Α.	Please refer to NP-126. When the Sc	outhside Steam Plant was functioning,					
7		the Installed Thermal Capacity was 3	0 MW rather than 0.0 MW as is					
8		currently the case. The calculation m	ethodology was the same except					
9		reserve was set at 18% in 1992.						
10								
11		Installed Capacity	(MW)					
12		Thermal	30.0					
13		Less 18% Reserve*	_4.6					
14		Capacity Credit	25.4					
15								
16		* Note - expressed as a perce	nt of load and calculated as					
17		30 (1-1/1.18)						

1	Q.	Explain in detail the basis for each of the estimated Specifically Assigned
2		amounts set out in Schedule 3.3A of the Cost of Service, as well as each of
3		the allocations to NP and each IC set out therein.
4		
5		
6	Α.	The detailed calculation for the Specifically Assigned amounts, by customer
7		are attached. Note: These charges have been slightly revised from those
8		calculated in JAB-1 due to the inadvertent omission of approximately
9		\$25,000 of plant from the customer plant ratios on JAB-1, p41.

1	Q.	What amounts were contributed by the Industrial Customers to subsidize the
2		cost of power provided to rural customers between January 19, 1996 and
3		December 31, 1999?
4		
5		
6	A.	Please see response to IC-8.

1 Q. Impacts re: Interconnections of Isolated Rural Systems to Island 2 Interconnected System 3 4 1. Provide a table indicating for each year from 1992 to 2002 inclusive 5 the following information related to interconnections of Isolated Rural 6 Systems to the Island Interconnected System that has been 7 undertaken during this period (based on H.G Budgell, pages 13 and 8 14, these include the interconnection of the Petite Forte community in 9 1993, St. Anthony-Roddickton System in 1996, the community of 10 Westport in 1996, the community of South East Bight in 1998, and the 11 community of LaPoile in 1999): 12 13 (a) Indicate for each year the operating load (actual or forecast) 14 applicable if the community or system is on the Isolated Rural 15 System (for years after interconnection, this load is to be 16 estimated); indicate sales separate from distribution losses. 17 Based on (a), indicate for each year the net reduction in (b) 18 Isolated Rural System load due to interconnections to date. 19 (C) Based on (a) and (b), estimate for each year the change in 20 Isolated Diesel System revenue requirement costs of service 21 and contribution to the Rural Deficit due to interconnections to 22 date. 23 (d) For each year starting with interconnection, indicate the new 24 operating load contributed to the Island Interconnected System 25 by these each interconnection (indicate sales separately for 26 Hydro Rural Interconnected and NP, and also indicate

27 transmission losses separately).

IC-203 2001 General Rate Application

1		(e)	Page 2 of 5 Based on (d), indicate for each year the net increase in Island
2		()	Interconnected System load due to interconnections to date.
3		(f)	Based on (d) and (e), estimate for each year the change in
4			Island Interconnected System revenue requirement costs of
5			service and contribution to the Rural Deficit due to
6			interconnections to date.
7		(g)	Based on (c) and (f) above, indicate for each year the net
8			change in the Rural Deficit for that year, and (separately) any
9			net change in the RSP for that year, due to interconnections to
10			date.
11			
12	2.	Base	d on the information developed in response to (1) above,
13		comp	are COSS estimates (including Rural Deficit) as presented in
14		Sche	dule 1.2 of Exhibit JAB-1, page 3 of 94 for the 2002 test year with
15		estim	ated COSS (and Rural Deficit) that would apply if none of the
16		interc	connections set out in (1) above had taken place to date. Provide
17		all su	pporting schedules for the new COSS estimate.
18			
19	3.	Provi	de a COSS analysis for the Island Interconnected System for test
20		year 2	2002 assuming that the Great Northern Peninsula system 138 kV
21		and 6	6 kV transmission lines and associated terminal station
22		equip	ment connecting the Hawkes Bay Diesel Plant, St. Anthony
23		Diese	el Plant and Roddickton generation plant to the main gird are
24		assig	ned to Hydro Rural Sub-transmission rather than to Common.
25			
26	4.	Adjus	t the COSS in (3) above to assume that the generation assets in
27		the G	reat Northern Peninsula system are also assigned to the rural
28		syste	m.

1		5.	Provi	Page 3 of 5 de a copy of all studies conducted by Hydro evaluating the cost				
2			effect	effectiveness of each of the interconnections in (1) above, either				
3			befor	e or after each interconnection.				
4								
5		6.	In 19	95, the Board recommended "that the prudence of costs				
6			asso	ciated with the St. Anthony/Roddickton interconnection be				
7			reviev	wed at the next Hydro rate referral, following the interconnection,				
8			for th	e purpose of determining recoverable costs." Provide all				
9			evide	ence available to Hydro as to why this interconnection was				
10			unde	rtaken, and that the costs were prudently incurred and in the best				
11			intere	est of customers on the Island Interconnected System.				
12								
13	Α.	1.	(a)	See IC 203A on attached table.				
14								
15			(b)	See IC 203B on attached table.				
16								
17			(C)	Subsequent to interconnection, costs on a hypothetical non-				
18				interconnected or isolated basis are no longer tracked, as they				
19				no longer reflect the operations nor financial situation of the				
20				company. It would not be possible to complete the requested				
21				information, as significant material data is unavailable.				
22				Moreover, the information requested is unnecessary for a				
23				satisfactory understanding of the matters regarding Hydro's				
24				application before the Board.				
25								
26			(d)	See IC 203D on attached table.				
27								
28			(e)	See IC 203E on attached table				

			Page 4 of 5
1		(f) Please refer to the response to 1(c) above.	
2			
3		(g) Please refer to the response to 1(c) above.	
4			
5	2.	Please refer to the response IC-203 1(c) above.	
6			
7	3.	Please refer to the response to IC-180.	
8			
9	4.	Please refer to the response to IC-87.	
10			
11	5.	See attached Interconnection Studies as requested.	
12			
13	6.	See attached reports.	

Referenc	ed Table for Responses to IC 203 A,	B,D,&E									2001 0	General Rate A	IC-203 Application
	•												Page 5 of §
		1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002 F	
C 203A	System & Interconnection Year	MWh	MWh	MWh	MWh	MWh	MWh	MWh	MWh	MWh	MWh	MWh Y	
		1											Diesel)
	Petite Forte 1993	352	382	394	405	416	428	439	451	463	475	487	1991
	St. Anthony Roddickton 1996	40411	40123	39819	39667	41417	41820	42224	42599	42974	43368	43762	1994
	Westport 1996	1294	1329	1318	1314	1326	1336	1343	1350	1354	1358	1362	1996
	South East Bight 1998	345	363	376	394	412	437	430	437	443	450	457	1996
	LaPoile 1999	452	435	446	452	472	529	528	525	521	517	509	1998
	Total Sales	42854	42632	42353	42232	44043	44550	44964	45362	45755	46168	46577	
	Distribution Losses	4607	5189	4601	4217	4771	4760	4837	4918	4961	5097	5141	
	Total Load	47461	47821	46954	46449	48814	49310	49801	50280	50716	51265	51718	
203B	Net Reduction in load		407	420	431	47873	48344	49273	50280	50716	51265	51718	
			1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	
203D	System & Interconnection Year		MWh	MWh									
	Petite Forte 1993		128	436	456	458	452	455	460	462	479	479	
	St. Anthony Roddickton 1996					14451	42870	45203	46997	50478	51452	51983	
	Westport 1996					264	1404	1417	1453	1494	1532	1548	
	South East Bight 1998 1							358	518	527	535	540	
	LaPoile 1999 2								533	567	667	680	
	Additional Sales		128	436	456	15173	44726	47433	49961	53528	54665	55230	
	Distribution Losses		21	38	36	950	3226	2707	3451	2829	3486	3527	
	Additional Load		149	474	492	16123	47952	50140	53412	56357	58151	58757	
	Transmission Losses 3		6	20	18	571	1688	2002	2104	2074	2122	2258	
203E	Additional Load on Island Interconnected System		155	494	510	16694	49640	52142	55516	58431	60273	61015	

1. South East Bight is metered with Monkstown. Distribution losses are estimated 2. LaPoile is metered with Grand Bruit & Hope Brook. Distribution losses are estimated

1	Q.	NUG	cost benefits for ratepayers:
2			
3		(1)	Indicate the overall cost benefits to ratepayers (through reduced
4			revenue requirements in 2002 and subsequent years) provided by
5			each of the NUGs implemented since 1992.
6		(2)	Indicate the forecast kWh for 2002, and actual numbers for each year
7			to date of operation, of the generation for each NUG during the winter
8			months (January to March and November and December) and the
9			other months (April to October).
10		(3)	Compare mill/kWh costs for each NUG (as set out in Schedule IX to
11			R. J. Henderson's evidence) to costs forecast for existing thermal
12			facilities and for other new generation options available to Hydro.
13		(4)	Explain the basis for setting NUG charges higher in 5 winter months
14			relative to the other months, and indicate the extent to which these
15			differences reflect Hydro's variability in seasonal time-of-use costs.
16			
17	Α.	(1)	On a go-forward basis, the overall forecast cost benefit to ratepayers
18			provided by Algonquin Power and the Star Lake Partnership for the
19			period from 2002 to 2006 is shown below. The expansion plan
20			beyond 2006 has not been finalized. The total forecast benefit is
21			comprised of an energy component and a capacity component. The
22			energy component is based on avoided thermal energy production
23			including fuel and variable O&M, as produced by Hydro's generation
24			planning model. The capacity component is based on the capital cost
25			of a similar amount of simple cycle gas turbine capacity which is
26			Hydro's least costly capacity alternative. In addition to these direct
27			benefits, other benefits such as reduced emissions from Hydro's
28			thermal plants are also derived from the NUGS contracts.

IC 208 2001 General Rate Application

Page 2 of 4

	(mills/kWh)					
		Algonqu	in Power	Star Lake Hydro		
	Avoided	Project		Project		
Year	Costs	Costs	Variance	Costs	Variance	
2002	73.5	69.8	3.6	67.9	5.5	
2003	64.6	71.2	-6.5	68.5	-3.8	
2004	59.0	71.9	-12.9	69.1	-10.1	
2005	59.9	72.7	-12.8	69.9	-10.0	
2006	63.0	73.5	-10.5	70.6	-7.6	

(2) Please refer to table below:

Newfoundland & Labrador Hydro NUGS Power Purchases

Star Lake Hydro Partnership

	January to	April to	November to
	March	October	December
Actual	(kWh)	(kWh)	(kWh)
1998	0	3,036,448	23,590,499
1999	35,357,979	79,806,714	23,623,995
2000	36,942,083	81,419,129	24,689,199
Forecast			
2001	29,181,000	76,691,000	22,129,000
2002	29,181,000	76,691,000	22,129,000

Algonquin Power (Rattle Brook) Partnership

	January to	April to	November to
	March	October	December
Actual	(kWh)	(kWh)	(kWh)
1998	0	112,056	2,502,760
1999	3,796,698	10,449,273	3,130,405
2000	2,997,733	11,431,296	3,397,398
Forecast			
2001	1,650,000	12,980,000	3,270,000
2002	1,650,000	12,980,000	3,270,000

2001 General Rate Application Page 3 of 4 1 The comparison of mill/kWh costs for each NUG to forecast costs for (3) 2 existing thermal facilities and Granite Canal is shown below. For 3 reasons of commercial confidentiality, Hydro cannot provide similar 4 information for other new generation options available to Hydro. 5 6 Mills/kWh 7 2001 2004 2002 69.8 8 Algonquin Power 70.6 9 Star Lake Partnership 67.3 67.9 10 Existing Holyrood⁽¹⁾ 52.9 51.0 Existing Gas Turbine⁽¹⁾ 11 115.6 112.0 Existing Diesel⁽¹⁾ 12 103.4 100.3 Granite Canal⁽²⁾ 13 54.2 14 (1) 15 Costs for existing thermal plant reflect fuel and variable O&M costs ⁽²⁾ Cost for Granite Canal reflects the levelized capital recovery and O&M 16 17 costs for the first full year of operation. 18 19 (4) In the 1992 RFP for non-utility generation from small scale hydro 20 projects, Hydro set a maximum price schedule for proposals whereby 21 proponents could elect to submit those prices or an alternative lower 22 schedule of prices. 23 24 Only the demand component of the pricing structure varied between 25 winter and summer. The energy portion was held constant for the 26 year. The basis for setting the demand component of the price higher 27 for the winter months was the September 1984 study of Marginal Time 28 of Use (TOU) Costs. That study indicated that the seasonality of load

IC 208

	Page 4 of 4
1	affected costs whereby the ratio of winter costs to summer costs was
2	1.5.
3	
4	To factor seasonal TOU into avoided costs, the Loss of Load
5	Expectation (LOLE) index was used to allocate the capacity
6	component of costs throughout the year. This resulted in a distribution
7	of capacity costs of 60% during November to March and 40% for the
8	remaining months.